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AXISYMMETRIC PROBLEMS

Equations in polar coordinates (2D) —
Equilibrium equations,
Strain-displacement relations,

Airy’s equation,
Stress function and Stress components

Axisymmetric problems —

Governing equations
Application to thick cylinders
Rotating discs
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AXISYMMETRIC PROBLEMS

Axisymmetric Problems:

Solids of revolution deforms symmetrically with respect to

the axis of revolution.

Eg:
1. Cylinders subjected to internal and external pressures.
2. Rotating Circular Disks.
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AXISYMMETRIC PROBLEMS

internal gage pressure = 450 psi
St,: simultaneous external axial tensile load = 45,000 Ib.

“ t=114"
S‘c

Problem #6
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AXISYMMETRIC PROBLEMS
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AXISYMMETRIC PROBLEMS

Torpedo impact on a 2790 tonne frigate.
Total time elapsed = 5 |minutes
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AXISYMMETRIC PROBLEMS

TRIDENT I FLIGHT TEST
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AXISYMMETRIC PROBLEMS

I-kr X ,» _ 2 F v
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AXISYMMETRIC PROBLEMS
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AXISYMMETRIC PROBLEMS
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POLAR COORDINATE SYSTEM
In mathematics, the polar coordinate system is

a two-dimensional coordinate system in which
each point on a plane is determined by
a distance from a reference point and an angle from

a reference direction.
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SPHERICAL COORDINATES
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CYLINDRICAL COORDINATES

+ve z Plane +ve 8 Plane
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Positive Planes in Cylindrical
Coordinates
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AXISYMMETRIC PROBLEMS

Stresses components in cylindrical
coordinates on a Cylinder Segment
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EQUS. IN POLAR COORDINATES

Stress components in Cylindrical Coordinates are :

o.r' ozl 06' trzl tzeltre

Differential Equations of Equilibrium in Cylindrical Co ordinates:

do, [i§ . 107 o.— Gp _
or + dz t r 90 + T TV =0
(15 do, 10tg; | Ty
%8z | ‘rz =0
ar T o0z t r 00 T r +Yz
aTrg aTBZ 1 609 ZTrg _
or "oz Tro0 T t¥o=0
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EQUS. IN POLAR COORDINATES

Diff Equ of Equil for Axisymmetric Problems:
Since the deformation is symmetrical stress components do not

depend on 6 and 1,4 & T4 do not exist

+ =+ +v,=0
or 0z r Yr
0T,y do, Tyy
+ 2+ Z4y,=0
ar 0z r Yz
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EQUS. IN POLAR COORDINATES

In plane stress condition only the following stress components

exist:
0,,0p & Ty
do 1079 G,.— Op
"+ -—+ —+v,=0
or r 00 r
aTrB + 1 60'9 + 21:1.9 +
oar r 00 r Yo~
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EQUS. IN POLAR COORDINATES

Strain Displacement Equ. in Cylindrical Coordinates

€ =

€9

€z

daU,
or
U,
T
au,

0z

10Uy
r 00

19U, 090Uy Ug

Yro = T30 7 or r
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EQUS. IN POLAR COORDINATES

Strain Displacement Equ. for axisymmetric problems

24th January 2019
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_0U,
r ™ ar
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EQUS. IN POLAR COORDINATES

Constitutive Relations/Hooke’s Law in Polar
Coordinates:

1
& = E [Gr -V (GB + 0-z)]
1
gy = - [6g—V (0, + 0,)]
1
€, = E [Gz -V (Gr + GB)]
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EQUS. IN POLAR COORDINATES

Constitutive Relations/Hooke’s Law for plane stress:

1
& = E [0'1.—\)0'9]
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THICK CYLINDERS

Thick cylinders subjected to internal and external pressure:-
(Lame’s Problem)

Py
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THICK CYLINDERS
Thick cylinders subjected to internal and external pressure:-

(Lame’s Problem) Plane Stress:

1—w\ [P,a% — P, b? 1+ 2p2 P, — P
ur:( )az b r+( ")a a b]
E b* — a E r [b2-—a2

[P.‘,a2 - Pbbz] a’h? [Pa - P,,]
G, = -

b2 — a2 ré¢ |p? — a2

P,a’ — P,b%*] a®’b*[P,-P,
%6 = bZ — a2 r2 [b2 - a2]

r
u, = (05— va,)
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THICK CYLINDERS

Cylinder subjected to internal pressure P _:-

P a? b?
a2\l

P a® b?
Opg = —b2—32 1+§ |
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THICK CYLINDERS

Cylinder subjected to external pressure P :-

P b2 a®
T\ T
P b? a’
Og = — bZ _ a2 1+ F
P
24th January 2019 Unsymmetrical Bending 26
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THICK CYLINDERS

Thick cylinders subjected to internal and external pressure:-

(Lame’s Problem)

Plane Strain:
P,a’ — P,b%*] a®b*[P,-P,
Or = b2— a2 | r2 [b2 — az]
_ [Paa® — Pyb?]  a’b*[P, - P,
%0 = |Tpz _ a2 2 |pZ —az
) P,a? — P,b?
g, = 2V
Z bz _ az
24th January 2019 Unsymmetrical Bending 27

AXISYMMETRIC PROBLEMS

v S O Do e (¥ (WO (T vt B G TG OIS ke [ 8 YW TE T

Hoop stresses contour plot. Radial Stresses contour plot.

Stress contour plot of Hoop Stress & Radial Stress for a thick
cylinder subjected to internal pressure.
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THICK CYLINDERS

A thick cylinder of internal diameter 160 mm is subjected to an
internal pressure of 40 N/mm?. If the allowable stress in the

material is 120 N/mm?, find the thickness required.

Ans: Thickness = 33.14 mm

P a? X b? ; %
g. = ———— -
=wes(tw) (ST
|
Paz bz o i
% = m(“r—z) |
I
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THICK CYLINDERS

A thick walled tube with an internal radius of 12 cm is subjected to
an internal pressure of 200 Mpa (E = 2.1 x 10° Mpa and v = 0.3).
Determine the optimum value of external radius if the maximum
shear stress developed is 350 MPa. Also determine the change in
internal radius due to the pressure

Ans: b =18.33cm; U, = 0.032 cm.

P a2 b2
=2\l T
P a? b?

“_a\lte

1—w\ [P,a% — P, b? 1 2pZ[p, — P
b= () P |t ) el
E b2 - a E r [b% —a?
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THICK CYLINDERS

ri 120

130

140

160

170

180

183.3

o, | -200.00

-148.22

-107.14 | -74.00

-46.87

-24.39

-5.55

0.00

0| 500.02

448.24

407.16 | 374.01

346.89

324.41

305.57

300.02

1| 350.01

298.23

257.15 | 224.01

196.88

174.40

155.56

150.01

24th January 2019

THICK CYLINDERS

Unsymmetrical Bending

31

A thick walled tube with an internal radius of 12 cm is subjected to

an external pressure of 200 Mpa (E = 2.1 x 10° Mpa and v = 0.3).

Determine the optimum value of external radius if the maximum

shear stress developed is 350 MPa. Also determine the change in

internal radius due to the pressure

e

P I
r 120 130 140 150 160 170 180 183.3
o; 0 -51.78 | -92.86 | -126 | -153.1 | -175.6 | -194.4 | -200
ogg| -700 -648.2 | -607.2 | -574 | -546.9 | -524.4 | -505.6 | -500.02
To| 350.01 | 298.23 | 257.15 | 224 196.9 | 174.4 | 155.6 | 150.01
24th January 2019 Unsymmetrical Bending
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THICK CYLINDERS

The shear stress at any point on a cylinder subjected to internal
and external pressure is given by:

Tax = % Tmax = 35000 N/cm?

The stress distribution on a cylinder subjected to internal

pressure shows that the shear stress will be maximum at the

inner surface.
At the inner surface, r = a;

6, = —P=-200MPa = —20000 N/cm?*

P a? b?
%= pz_az\1 Tz

24th January 2019 Unsymmetrical Bending 33

THICK CYLINDERS

b?+a? bZ+122
= Pm = 20000[}2_—

122

b%+122

2. Tax = 20000. 5755 —

—20000

b%+122+p%-122
2x1.75=————->-7—
b2-122

b2

b=18.33cm. Ans

24th January 2019 Unsymmetrical Bending 34
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THICK CYLINDERS

1 —w [P,a%? — P b? 1+ 2p2 [P, — P
u= () P ()

E b% — a2 E r |b%-—a?

2.1x105/(18.332 — 122
( 14+0.3 )122)(18.332[ 200

2.1x105 12 18.332 — 122

1-0.3 200 x 122
U, = ( ) 12

U,=0.032cm Ans
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THICK CYLINDERS

If the factor of safety is given use the following equation to get the

permissible stress:

yield stress

Factor of Safety =

Permissible Stress

Any of the failure theories can be used for the design:

Use, 6, = Gy 0, =0; 0; = 0,

24th January 2019 Unsymmetrical Bending 36
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THEORIES OF FAILURE

THEORIES OF FAILURE:

Failure depends on mode of failure i.e., ductile or brittle and the

factor such as stress, strain and energy.

> o, is the yield stress for the material in a uniaxial test.

» 0, 0,and o, are the principal stresses such that 0, > ¢, > 0,4

1. Maximum principal stress theory:

According to maximum principal stress theory, failure

occurs when o, >0,

24th January 2019 Unsymmetrical Bending 37

THEORIES OF FAILURE

THEORIES OF FAILURE:

> o, is the yield stress for the material in a uniaxial test.

> 0, 0, and o, are the principal stresses such that ¢, > 6, > 03

2. Maximum Shearing Stress Theory:

According to maximum shearing stress theory,
failure occurs when %1 — %3 _ 9y
2 2

24th January 2019 Unsymmetrical Bending 38
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THEORIES OF FAILURE

THEORIES OF FAILURE:

> o, is theyield stress for the material in a uniaxial test.

» 0, 0,and o, are the principal stresses such that 0, > g, > 0,4

3. Maximum Elastic Strain Theory:

According to maximum Elastic Strain theory,
failure occurs when

1 o
E[01 — v(oz+ 03)] = Ey

24th January 2019 Unsymmetrical Bending 39

THEORIES OF FAILURE

THEORIES OF FAILURE:

> o, is the yield stress for the material in a uniaxial test.

> 0, 0, and o, are the principal stresses such that ¢, > 6, > 03

4. Octahedral Shearing Stress Theory:

According to maximum Octahedral Shearing
Stress theory, failure occurs when

1 V2
3 [(6, —02)% + (62 —03)* + (65— 6,)*]"/2 = 3 %

24th January 2019 Unsymmetrical Bending 40
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THEORIES OF FAILURE

THEORIES OF FAILURE:

> o, is theyield stress for the material in a uniaxial test.

» 0, 0,and o, are the principal stresses such that 0, > g, > 0,4

5. Maximum elastic energy Theory:

According to maximum elastic energy theory,
failure occurs when

6% + 03 + 05— 2v(0616, + 0,03+ 630;) = o3
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THEORIES OF FAILURE

THEORIES OF FAILURE:

> o, is the yield stress for the material in a uniaxial test.

> 0, 0, and o, are the principal stresses such that ¢, > 6, > 03

6. Energy of distortion theory:

According to maximum Energy of distortion
theory, failure occurs when
VZ

1
3 [(61 —62)* + (62 — 63)% + (63 —0,)%]Y% = ?Uy

* This identical to the octahedral shearing stress theory.

24th January 2019 Unsymmetrical Bending 42
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COMPOSITE TUBES

STRESSES IN COMPOSITE TUBES -
INTERFERENCE FIT

24th January 2019 Unsymmetrical Bending 43

COMPOSITE TUBES

In a shrink fitted composite tube two cylinders of different material

or same material is fitted one inside another.
a— Inner radius of the inner cylinder.
¢ — Outer radius of the inner cylinder.

c-A — Inner radius of the outer cylinder.

b — Outer radius of the outer cylinder.

24th January 2019 Unsymmetrical Bending 44
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COMPOSITE TUBES

The two cylinders are assembled by heating the outer cylinder and

cooling the inner cylinder.

The composite tubes can with stand very high pressure of the order

of 15000 bar.

If we need a normal tube to withstand such a high pressure the
yield stress of the material must be at least 2940 MPa. Since no
such high-strength material exist, shrink fitted composite tubes are

designed.

24th January 2019 Unsymmetrical Bending 45

COMPOSITE TUBES

P.is the contact pressure due to shrink fit.

The contact pressure acts on the outer surface of the inner

cylinder and inner surface of the outer cylinder.

u, — Reduction in outer radius of the inner cylinder due to contact

pressure P..

u, — Increase in inner radius of the outer cylinder due to contact

pressure P..

-U;+U,=A

24th January 2019 Unsymmetrical Bending 46
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COMPOSITE TUBES

Substituting the expression for U; and U, in the above

expression we get,

Ac
PC -

de2+a 1.1
E,|cZ — a2 Vi E,

The above expression give the contact pressure, P, due to shrink
fit.
If the two cylinders are made of the same material.

Then, E;=E,; vi=vV,

24th January 2019 Unsymmetrical Bending 47

COMPOSITE TUBES

If the two cylinders are made of the same material.

Then, E;=E,; vi=vV,
EA (c?—a?)(b?—c?)
2¢3

PC:

Stress distribution in _a shrink fit

cylinder due to contact pressure.

24th January 2019 Unsymmetrical Bending ’ 48
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COMPOSITE TUBES

Fig a shows the stress distribution on the shrink

fit due to the contact pressure.

“Fig b shows the stress distribution due to
internal pressure.
Sum of the stresses at any point on the shrink

fit tube will give the net stress due to shrink fit

and internal pressure.

~ At the inner surface of the inner tube p causes

a tensile circumferential stress but the p,

causes a compressive circumferential stress.

24th January 2019 Unsymmetrical Bending 49

COMPOSITE TUBES

So the net stress at the inner surface of the inner wall will be less

than the stress due to internal pressure alone.

Hence a composite cylinder can support greater internal pressure

than an ordinary cylinder.

At the inner point of the external cylinder both the stress due to p

and that due to p_are tensile and they get added up.

24th January 2019 Unsymmetrical Bending 50
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COMPOSITE TUBES

For design purposes the shrink fit
allowance can be chosen such that the

two cylinders will have equal strength.

According to maximum shear stress

theory:

(01— 03)a = (07— 03)p

Shrink Fit allowance

2P bZc(c? — a?)
required for getting A= E b2 (c2 — a?) — c2(b2 — c2)
equal strength is given by

24th January 2019 Unsymmetrical Bending 51

COMPOSITE TUBES

. 2p? 1
Og = 6 =P 3|1~ —2 p)

+
b2 — ¢2 cZ— a2

The above quantity will be minimum when
b? c?

bz = cz+ - aZ IS minimum

For a given values of P, a and b, the optimum values of c and A for

which the value of oy — o, is a minimum is given by:

P
c= vab and A, = EVab

24th January 2019 Unsymmetrical Bending 52
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COMPOSITE TUBES

A tube 96 mm in diameter is used to reinforce a tube 48 mm internal
diameter and 72 mm outer diameter. The compound tube is made to
with stand an internal pressure of 60 MPa. The shrinkage allowance
is such that the final maximum stress in each tube is the same.
Determine this stress and plot a diagram to show the variation of
hoop stress in the two tubes. Also calculate the shrinkage allowance

required.

24th January 2019 Unsymmetrical Bending 53

COMPOSITE TUBES

Hoop stress = Circumferential stress = tangential stress.

Find the Hoop stress in terms of contact pressure at

Inner Cylinder: Atr =24 mmand r =36 mm (-3.6P.and-2.6 P)
Outer cylinder: At r =36 mm and r =48 mm (3.572 P_and 2.572 P )

Consider the composite tube as a single unit and find the Hoop stress

at r=24mm, 30mm and 48 mm (100 Mpa, 55.6 Mpa and 40 Mpa)

Find the net stress at the inner and outer radii of both tubes.

24th January 2019 Unsymmetrical Bending 54
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COMPOSITE TUBES

Equate Maximum stress in the inner tube to maximum stress in
the outer tube and find the contact pressure (6.19 MPa).
A =0.0066 mm.

24th January 2019 Unsymmetrical Bending 55

ROTATING DISCS

STRESSES IN ROTATING DISCS

24th January 2019 Unsymmetrical Bending 56
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ROTATING DISCS

STRESSES IN SOLID ROTATING DISC:

The stress distribution in rotating circular disks which are thin is

given by: b — Outer radius of the disk

6, = 3 ; v pw?(b? — 1?) p — Density of disk material.
3+v 1+ 3v

%= —3 pw?b? — 3 pw?r?

r
u, = E(Ue —vo,)

The stresses attain their maximum value at the centre of the disc.

. 3+v 292
(I.e., at r=0)- (Gr)max = (Ge)max = 8 pw-b
24th January 2019 Unsymmetrical Bending 57

ROTATING DISCS

STRESSES IN ROTATING DISC WITH A HOLE OF RADIUS a:

The stress distribution in rotating circular disk with a hole is given

3+v
8

aZp? b — Outer radius of the disk
pw? (b2 +at———— rz) _ . .
r p — Density of disk material.
34 2p2 143 a- radius of the hole
og = > pw? (bz +a% + —arz - 1‘2)

8 3+v ® — Angular velocity in rad/s.

r
u. = - (og —vo,)
- E ' (0r)max = %pr(b - a)z atr =vab

3+v -V
2 2 2
(6g) = w (b + a ) atr=a
8/max 8 P 34+v
24th January 2019 Unsymmetrical Bending 58
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ROTATING DISCS

A thin disc of uniform thickness is of 800 mm outer diameter and 50
mm inner diameter. It rotates at 3000 rpm. Determine the radial and
the hoop stresses at radii of 0.25 mm, 50 mm, 100 mm, 150 mm, 200
mm, 300 mm and 400 mm. Density of the material is 7800 kg/m3, v

= 0.25, What are the maximum values of the radial, hoop and shear

stresses.
(use Sl units) 31y aZb?
— 2 [ K2 2 2
6. = 8 pw (b +a“ — Z —r)
3+v 2 sz _143v 5
00 = “5pw? (b* +a” + )
24th January 2019 Unsymmetrical Bending 59

ROTATING DISCS

0. 0001

Radial Stress, 6, = 312.75 (0 1606 — 2) MPa

o,(Mpa) 0 36.94 43.97 1.8 36.94 21.73

Hoop Stress,

0g(Mpa)  100.17 62.32 51.68 47.83 44.28 35.423 23.48

24th January 2019 Unsymmetrical Bending 60
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ROTATING DISCS

100
S0
80
70
60
50
40
30
20
10

— Stress (MPa) —

o -H

T

—+— O,

o ¥

-4

—&— Og

0

005 01 015 02 025 03 035 04 045
— radiusr (m)—

Note: Atr=a,0,=0

24th January 2019
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ROTATING DISCS

A hollow steel disc of 400 mm outer diameter and 100 mm inside

diameter is shrunk fit on a steel shaft. The pressure between the

disc and the shaft is 60 MPa. Determine the speed of the disc at

which it loosen from the shaft neglecting the change in dimensions

of the shaft due to rotation. p = 7700 kg/m3and v = 0.3.

24th January 2019 Unsymmetrical Bending 62
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ROTATING DISCS

—Ushaft(CP)
“Dlsc(CP)
60 x 108

<[>

0.05; P

o;r

(Shaft) a

Lo
. L e
S x
53
r = i )
U, = —=(0g — VO 8% _ Pa b
r E( 0 r) + “°*b2_az(1
s P a? (1 b2
= - 5m: - -5 8r o= 5——(1-
UdiSC (cp) — 10 m; Udisc (cP) = 2.05x10>m -_“g—’é b2 —a
o N
= - T2
B = Ugisc (cp) = Ushart (cp) £3
o
24th January 2019 Unsymmetrical Bending 63

ROTATING DISCS

A = Ugise (cp) = Yshatt (cp) = 3-05 x 107

212
A= Udisc (rot) ~ Ushaft (rot) o, = ﬂpmz (bz +a? - a }Z) _ rz)
8 r
_ 31 2 ( 2 2 azbz _ 1+3v 2)
O = —5 PO b ta®+— sy ¥

r
u, = E(Ge — Vo)

Radial displacement of disc due to rotation:

a= 0.05; b= 0.2; r= 0.05,' pP= 7700; Udisc(rot) =6.1302 x 10-11 wz m

Radial displacement of shaft due to rotation:

a=0;b=0.05;r=0.05; p=7700;

Ushaft(ron) = 8:021 x 10-13 w?m

24th January 2019 Unsymmetrical Bending 64

Q
-
|
o
T
™
R
=
|
-

Cylinder Subjected to external pressure
=b =
a
D
|
|
=3
Nlog
(HE-J
o N
~N
/N
=Y
+

w= 710 rad/sec; N =6781.
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ROTATING DISCS

Ur=1.00x 10> m.

When the disc is rotating , find the value of oy and o, in terms of

. 21,2
® using equ. 4, — ?sz (bz +a?_ arlz’ _ rz)

_ 3+v 2 2 2 aZb? 1+3v 2
00 = Trpwt (b +a® + 5 -0

and thereby find the radial displacement using equ.

r
u, = (0 - va,)

The disc will get loosened when this radial displacement is

equal to 1.952 x 10° m

24th January 2019 Unsymmetrical Bending 65

ROTATING DISCS

o =710.1 rad/s

rpm=6781

24th January 2019 Unsymmetrical Bending 66
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ROTATING DISCS

A flat steel disc of 75 cm outside diameter with a 15 cm dameter hole
is shrunk around a solid shaft. The shrink fit allowance is 1 part in
1000 (0.0075 cm in radius). E = 2.14 x 10° MPa.

At what rpm will the shrink fit loosen up as a result of rotation?

What is the circumferential stress in the disc when spinning at the
above speed?

Assume that the same equations as for the disk are applicable to the
solid rotating shaft also.

(use Sl units)

24th January 2019 Unsymmetrical Bending 67

ROTATING DISCS

o = 475 rad/s
rpm = 4536
24th January 2019 Unsymmetrical Bending 68
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STRESS FUNCTION IN POLAR COORDINATES

Airy s Stress Function (¢) in polar coordinates can be defined
as:

5 120, 10%
T p ar rz §o2
0% ¢
Ogp = Fr)
a0 (1 ao)
%™ " ar\roae
24th January 2019 Unsymmetrical Bending 69

STRESS FUNCTION IN POLAR COORDINATES

Stress Compatibility Equations:

Plane Stress:
0B B 10B
200204 — r, °r, 778
vi(vie) = (1+V)(6r Tt ae)
Plane Strain: 1 B B 198
200204 — r, °or, -778
vV = (1—1/)(61" Tty ae)
20— 10 (.00, 1(0%°0
Veo = ror (r ar) t o (662)
In the absence of body forces: V2 (V?0) =0

The above equation is also called Biharmonic equation

24th January 2019 Unsymmetrical Bending 70
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STRESS FUNCTION IN POLAR COORDINATES

Show that the function @ = (Ar? + <+ D) Cos26
satisfies the stress compatibility equation in polar
coordinates in the absence of body forces. Find the
components of stress.

In the absence of body forces  VZ(VZ(p) = 0
10, 00 1 /00
2 Z (22 S R )
v (r or (r 61') * r? (692)) 0

24th January 2019 Unsymmetrical Bending 71

STRESS FUNCTION IN POLAR COORDINATES
10/ 00 1 (/9%
2 — [+ |
Ve = rar(r Br) + r? (692)
- (2Ar ) r%) Cos20

@
ar
0(.99_29 2Ar? 2Cc 20
Or(rar)_ar( m- r2) 03

C
= (4Ar + 4—3) Cos26
r

16(69)—(41% 4C Cos20
ror rar B + r4) 03
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STRESS FUNCTION IN POLAR COORDINATES

0’0 0
002 90
040
062
1 9%¢
rZ g2

Vip =

VZ(VZQ) — VZ(

24th January 2019

C
(—2 (Ar2 + = + D) smze)

C
— = —4 (Ar2 + r—2+ D) Cos26

= —4 (A+ r%+ 2)C0529

r

—4D

Cos26

r2

—4D

Cos26 )

re

Unsymmetrical Bending

STRESS FUNCTION IN POLAR COORDINATES

V2(V2g) = vZ(

—4D

Cos20 )

1,.2

—4D
10 6(—;7—C0526 ) 1
= —lT +—2
rdr or r

—16D 20

10 6(?—?(20528 )
——|r = Cos
or r4
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STRESS FUNCTION IN POLAR COORDINATES

—-16D 16D
V2(V2@) = —=Cos20 + —-Cos26
VZ(V20) =0

@ = (Ar2 + r%+ D) Cos26
_ 109  10%
IT ™ v ar r2 0oz
10 C
190 _ (ZA _ 2?4) Cos26

r or
10%9

C D
I‘_Z@: —4(A+ I'_4'+ Z)COSZB

r
6C

4D
O = — (2A+ Py + r—z) Cos286
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STRESS FUNCTION IN POLAR COORDINATES

¢ = (Ar2 + r%+ D) Cos20

%0
T00 = 5z
9 _ c
= (2ar—2)Cos26
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STRESS FUNCTION IN POLAR COORDINATES
0= (Ar2 + r%+ D) Cos26

— i(l@)
7 " o \r a8

9 _ _

® = z(Ar2 + S+ D) Sin26

To = — (-2 (Ar+ <+ =) Sin26)

ar
6C 2D .
T = (ZA— - r—z) Sin28
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STRESS CONCENTRATION

Large stresses resulting from discontinuities developed in a small

portion of a member are called stress concentrations

P Oav = a
I | | | "
[ 1 | Stress trajectory
; : : : I” (Line of force)
(%] [ 1 !
I 1 I ]
! 1 ) |
| |
| 1
| 1
|

s e s

\

o i o e i
————————

B

Omax = Oav

4 £

A

Peeetttttts]

b P
A+TTTTTTTQA l'-’—'m_"_ax>o'av=K

Omax _ 4
Gav
9

(a)

-] e ] A
<t ——————— | PERE
o i e SR

B B
e B S

1 lgk
%

-] ————
B

Q
)
=

(b)
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STRESS CONCENTRATION

o=f a=f
AERESRAN EERRRREN
P Lo || stress wajactory | A || Stress trajectory
[ 1 [ L& (Lines of force) [ : : ! : : : L= (Lines of force)
| : : | P : A T T T R A
\ | | | I 1 I | | | ] | |
Vo R R ’
RNy L) ek
| 1 | § 1T 1 1 |
T [ | | [ | l
| | [ I R | [
| J I [ | ] ] | 1
i \ N R \t & 1
| I L O A T B T
| I [ | | | I
I I I 1 I I I | I i I L
I ] ] I I I I I I I 1
I I I I I I I I I 1 i
o [ N | o
[ [ | o
I I I 1 I I I I I 1 1
I I ] I I I I I 1 I 1
I I ] I ] I I I I I I 1
1
X NERRERRER
a2
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STRESS CONCENTRATION

Conditions for Stress concentration:

1. Abrupt changes in section eg: root of the thread of a bolt, at the
bottom of a tooth on a gear, at a section of a plate or beam

containing a hole, corner of a keyway in a shaft.

2. Contact Stresses at the point of application of the external forces —

eg: at points of contact between gear teeth.
3. Discontinuities in material: eg: non metallic inclusions in steel.
4. Initial Stresses in a member — eg: residual stresses in welding.

5. Crack that exists in the member
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STRESS FUNCTION IN POLAR COORDINATES

Stress concentration problem of a small hole in a large plate :

on =5 (1-5)+3 (1-5) (1-35) cos20
Ogg = g (1 +i—z)—% (1 +3§) Cos20

te= -2 (1-2) (1+%) sin20
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STRESS FUNCTION IN POLAR COORDINATES

Atr = a;06.. = 1.9 = 0,forallf
Alr = 00,04y = O = 0; Ty =Trp = 0,for6 =0,m

=0 =0;Tgy = Trp = 0,for :11/2 ,311/2

Atr = a;0g9 = 0(1 — 2Co0s28)

(Ggﬂ)max = 30-, fOI'e = T[/Z ,31T/2
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STRESS FUNCTION IN POLAR COORDINATES

Application of stress function to Lame’s problem:

@B(r) = Alogr + Brllogr+ Cr2+ 1D

- _ 190  14%0
T rar r2 892

a0

— =0

ae

220

190
=-— and o©gg = =
00— 52

ag
T r dr

_1d@  1d(Alogr+ Br?logr+ Cr?+D)
T rdr r dr

2
= l[‘—!'+ ZBrlogr+BL+ 2Cr]
rir T

=2 4 B(Q+2logr) +2C

rZ
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STRESS FUNCTION IN POLAR COORDINATES

2
4z d[§+ ZBrlogr+B%+ ZCr]

Ggp — ——
80 7 dr2 dr

—A
=zt 2Blogr+2B+ B + 2C

—A
:r_2+ B(3 + 2logr) + 2C
The boundary conditions can be applied as follows:
» Stress components varying along the radial direction
» Plane Stress as well as plane Strain Condition.

» Coefficient B must be zero from the consideration of

displacement of thick cylinders.
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STRESS FUNCTION IN POLAR COORDINATES

With B = 0, the stress function and components can be written as:
O(r) = Alogr + Brllogr+ Cr2+ D

A
S+ 2C

O = 5
T r

—A
Ggg — r_2+ 2C

On(r=a) = =Py 5+ 2C= —P,
A
O'rr(l" = b) = *Pb,' b72+ 2C = *Pb

_ (Py—Pylab?

A— 20 — Paa’— Pyb?

(bz,az) (bz,az)
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STRESS FUNCTION IN POLAR COORDINATES

[Paaz - Pbbz] a’b? [Pa - P.,]
o, = —

bz_az r2 bz_az

P,a’ — P,b%] a’b?[P, - P,
%6 = b% — a? + r [bz - az]
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STRESS FUNCTION IN POLAR COORDINATES

Shear Centre:
» The transverse force applied at shear center does not lead to
the torsion of thin-walled beam.

> The shear center is a center of rotation for a section of thin-

walled beam subjected to pure torsion.

» The shear center is a position of shear flows resultant force, if

the thin-walled beam is subjected to pure shear.
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